Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (E)-2-Hydroxy-N'-(3-hydroxy-4-methoxybenzylidene)benzohydrazide

#### **Zhi-Gang Luo**

College of Chemistry and Chemical Engineering, JiangXi Province Key Laboratory of Coordination Chemistry, JingGangShan University, Ji'an, JiangXi 343009, People's Republic of China

Correspondence e-mail: lsj\_578@126.com

Received 27 July 2007; accepted 28 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.166; data-to-parameter ratio = 16.8.

The molecule of the title compound,  $C_{15}H_{14}N_2O_4$ , is roughly planar, except for the methyl H atoms, and displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two rings is  $3.7 (2)^{\circ}$ . The crystal structure is stabilized by intermolecular O-H···O and N- $H \cdots O$  hydrogen bonds.

#### **Related literature**

For related literature, see: Allen et al. (1987); Qiu, Fang, Liu & Zhu (2006); Qiu, Luo, Yang & Liu (2006).



#### **Experimental**

Crystal data

 $C_{15}H_{14}N_2O_4$  $M_r = 286.28$ Monoclinic,  $P2_1/c$ a = 12.436 (3) Å b = 7.1581 (14) Åc = 15.048 (3) Å  $\beta = 100.95 \ (3)^{\circ}$ 

V = 1315.2 (5) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.11 \text{ mm}^{-1}$ T = 298 (2) K  $0.34 \times 0.15 \times 0.06 \text{ mm}$ 

#### Data collection

```
Bruker SMART APEX area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.96, T_{\rm max} = 0.99
```

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.166$               | independent and constrained                                |
| S = 1.10                        | refinement                                                 |
| 3288 reflections                | $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 196 parameters                  | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ |

11560 measured reflections

 $R_{\rm int} = 0.030$ 

3288 independent reflections

2008 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                    | D-H                              | $H \cdots A$                     | $D \cdots A$                                             | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------|--------------------------------------|
| $N1 - H1 \cdots O3^{i}$<br>$D1 - H2 \cdots O2$<br>$D3 - H11 \cdots O2^{ii}$<br>$D3 - H11 \cdots O4$ | 0.86<br>1.00 (2)<br>0.82<br>0.82 | 2.26<br>1.65 (2)<br>2.17<br>2.23 | 2.9616 (16)<br>2.5424 (19)<br>2.8451 (16)<br>2.6781 (17) | 138<br>146.3 (19)<br>140<br>115      |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) -x + 2, -y, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author acknowledges the support of JingGangShan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2180).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, 02685-02686.
- Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, 03531o3532.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o3672 [doi:10.1107/81600536807037014]

# (E)-2-Hydroxy-N'-(3-hydroxy-4-methoxybenzylidene)benzohydrazide

## Z.-G. Luo

### Comment

Recently, we have reported a few Schiff base complexes (Qiu, Luo *et al.*, 2006; Qiu, Fang *et al.*, 2006), As an extension of our work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

In the title compound, all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). The C8=N2 bond length of 1.275 (2) Å conforms to the value for a double bond. The bond length of 1.337 (2) Å between N1 and C7 is greater than the value for a double bond, and less than the value for a single bond, because of conjugation in the molecule. The dihedral angle between the two rings is  $3.7 (2)^\circ$ .

The crystal structure is stabilized by intermolecular O-H···O and N-H···O hydrogen bonds. (Table 1 and Fig. 2)

### **Experimental**

The reagents were commercial products and were used without further purification. 3-Hydroxy-4-methoxybenzaldehyde (0.1 mmol, 15.2 mg) and 2-hydroxybenzhydrazide (0.1 mmol, 15.2 mg) were dissolved in ethanol (15 ml). The reaction mixture was stirred for 30 minutes to give a clear solution. After allowing the resulting clear solution to stand at room temperature in air for 9 d, large colourless crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl<sub>2</sub> (yield 66%).

#### Refinement

Atom H2, attached to O1, was located in a difference Fourier map and refined with an O—H distance restraint of 1.00 (2) Å. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H, N—H and O—H, distances of 0.93–0.96, 0.86 and 0.82 Å, respectively. and with  $U_{iso}(H) = 1.2U_{eq}(Csp^2, N)$  or  $1.5U_{eq}(methyl C, O)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate intramolecular hydrogen bonds.



Fig. 2. The crystal packing of the title compound, viewed along the *a* axis. Dashed lines indicate intermolecular hydrogen bonds.

# (E)—N'-(3-Hydroxy-4-methoxybenzylidene)-2-hydroxybenzohydrazide

| Crystal data                   |                                              |
|--------------------------------|----------------------------------------------|
| $C_{15}H_{14}N_2O_4$           | $F_{000} = 600$                              |
| $M_r = 286.28$                 | $D_{\rm x} = 1.446 {\rm ~Mg} {\rm ~m}^{-3}$  |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 2865 reflections        |
| a = 12.436 (3) Å               | $\theta = 4.2 - 26^{\circ}$                  |
| b = 7.1581 (14)  Å             | $\mu = 0.11 \text{ mm}^{-1}$                 |
| c = 15.048 (3) Å               | T = 298 (2) K                                |
| $\beta = 100.95 \ (3)^{\circ}$ | Block, colourless                            |
| $V = 1315.2 (5) \text{ Å}^3$   | $0.34\times0.15\times0.06\ mm$               |
| Z = 4                          |                                              |
|                                |                                              |

#### Data collection

| Bruker SMART APEX area-detector diffractometer                 | 3288 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2008 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.030$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 28.5^{\circ}$   |
| ω scans                                                        | $\theta_{\min} = 2.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -16 \rightarrow 16$               |
| $T_{\min} = 0.96, \ T_{\max} = 0.99$                           | $k = -9 \rightarrow 9$                 |
| 11560 measured reflections                                     | $l = -19 \rightarrow 20$               |

## Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                                                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H atoms treated by a mixture of independent and constrained refinement                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                                | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0815P)^{2} + 0.0205P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$         |
| $wR(F^2) = 0.166$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                                             |
| <i>S</i> = 1.10                                                | $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$                                                         |
| 3288 reflections                                               | $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$                                                      |
| 196 parameters                                                 | Extinction correction: SHELXL97 (Sheldrick, 1997a), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.009 (3)                                                                           |

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$  $\boldsymbol{Z}$ х y C1 0.0383(3)1.19143 (13) 0.11923 (19) 0.43668 (9) C2 1.30560 (13) 0.1048(2)0.46186 (11) 0.0455 (4) C3 1.35507 (15) 0.1122 (2) 0.55284 (12) 0.0585 (5) H3 0.1022 0.070\* 1.4308 0.5695 C4 1.29249 (16) 0.1342(2)0.61828 (12) 0.0569 (5) H4 0.1396 0.068\* 1.3266 0.6788 C5 1.18013 (14) 0.1484(2)0.0482 (4) 0.59570(10) Н5 1.1384 0.1631 0.6404 0.058\* C6 1.13091 (13) 0.1405(2)0.50587 (10) 0.0426(4)H6 1.0551 0.1496 0.4904 0.051\* C7 0.10751 (19) 0.34001 (9) 0.0396 (4) 1.13998 (13) C8 0.1348(2)0.20923 (9) 0.0408 (4) 0.87839(12) H8 0.049\* 0.8400 0.1461 0.2563 C9 0.81933 (12) 0.12816 (19) 0.11589 (9) 0.0384 (3) C10 0.87688 (12) 0.11754 (19) 0.04428 (9) 0.0382(3)H10 0.9530 0.1131 0.0567 0.046\* C11 0.82212 (12) 0.11374 (19) -0.04359 (9) 0.0364 (3) C12 0.70753 (13) 0.1193 (2) -0.06330(10)0.0423 (4) C13 0.64983 (13) 0.1286 (2) 0.00710(11) 0.0511 (4) H13 0.5737 0.1317 -0.00540.061\* C14 0.70586 (13) 0.1333(2)0.09602 (11) 0.0470 (4) H14 0.6668 0.1400 0.1429 0.056\* C21 0.54812 (16) 0.1023 (3) -0.17878 (14) 0.0823 (7) H21A 0.123\* 0.5231 -0.0063-0.1512H21B 0.5280 0.0921 -0.24340.123\* H21C 0.5150 0.2119 -0.15890.123\* H2 1.3208 (19) 0.093(3)0.3393 (15) 0.084 (7)\* N1 0.13674 (18) 0.0444(3)1.03213 (10) 0.31683 (8) H10.9941 0.1624 0.3574 0.053\* 0.22650 (8) N2 0.98266 (11) 0.12502 (17) 0.0448(4)01 1.37067 (10) 0.08214 (18) 0.39977 (9) 0.0628 (4) O2 1.19532 (9) 0.06595 (17) 0.28146(7) 0.0521 (3) O3 0.88194 (8) 0.10779 (14) -0.11127(7)0.0461 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H11 | 0.8403      | 0.1059       | -0.1605      | 0.069*     |
|-----|-------------|--------------|--------------|------------|
| O4  | 0.66287 (9) | 0.11568 (16) | -0.15360 (7) | 0.0558 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C1  | 0.0423 (8)  | 0.0413 (8)  | 0.0314 (7)  | 0.0009 (6)  | 0.0073 (6)  | 0.0002 (6)   |
| C2  | 0.0432 (9)  | 0.0495 (9)  | 0.0437 (9)  | -0.0010(7)  | 0.0083 (7)  | 0.0026 (6)   |
| C3  | 0.0445 (10) | 0.0752 (12) | 0.0513 (10) | -0.0006 (8) | -0.0020 (8) | 0.0011 (8)   |
| C4  | 0.0639 (12) | 0.0638 (11) | 0.0377 (9)  | -0.0005 (8) | -0.0035 (8) | 0.0007 (7)   |
| C5  | 0.0609 (10) | 0.0502 (9)  | 0.0336 (8)  | 0.0018 (7)  | 0.0096 (7)  | -0.0002 (6)  |
| C6  | 0.0441 (8)  | 0.0483 (9)  | 0.0357 (8)  | 0.0017 (6)  | 0.0080 (6)  | -0.0003 (6)  |
| C7  | 0.0433 (8)  | 0.0446 (8)  | 0.0323 (8)  | 0.0014 (6)  | 0.0107 (6)  | 0.0015 (6)   |
| C8  | 0.0440 (9)  | 0.0489 (9)  | 0.0311 (7)  | -0.0006 (6) | 0.0112 (6)  | -0.0023 (6)  |
| C9  | 0.0423 (8)  | 0.0425 (8)  | 0.0315 (7)  | -0.0020 (6) | 0.0094 (6)  | -0.0020 (6)  |
| C10 | 0.0352 (8)  | 0.0453 (8)  | 0.0343 (8)  | -0.0006 (6) | 0.0072 (6)  | 0.0011 (6)   |
| C11 | 0.0375 (8)  | 0.0395 (8)  | 0.0337 (7)  | -0.0003 (6) | 0.0103 (6)  | 0.0016 (5)   |
| C12 | 0.0401 (8)  | 0.0514 (9)  | 0.0337 (8)  | 0.0025 (6)  | 0.0024 (6)  | -0.0034 (6)  |
| C13 | 0.0347 (8)  | 0.0733 (11) | 0.0461 (9)  | -0.0006 (7) | 0.0100 (7)  | -0.0076 (8)  |
| C14 | 0.0410 (8)  | 0.0640 (10) | 0.0385 (8)  | -0.0023 (7) | 0.0143 (7)  | -0.0058 (7)  |
| C21 | 0.0435 (11) | 0.143 (2)   | 0.0542 (12) | 0.0125 (11) | -0.0075 (9) | -0.0168 (11) |
| N1  | 0.0432 (7)  | 0.0644 (9)  | 0.0259 (6)  | 0.0056 (6)  | 0.0076 (5)  | -0.0030 (5)  |
| N2  | 0.0479 (8)  | 0.0582 (9)  | 0.0281 (7)  | 0.0047 (6)  | 0.0068 (5)  | -0.0014 (5)  |
| 01  | 0.0413 (7)  | 0.0958 (10) | 0.0534 (8)  | 0.0035 (6)  | 0.0142 (6)  | 0.0052 (6)   |
| 02  | 0.0480 (7)  | 0.0753 (8)  | 0.0357 (6)  | 0.0072 (5)  | 0.0147 (5)  | -0.0020 (5)  |
| 03  | 0.0422 (6)  | 0.0685 (7)  | 0.0285 (5)  | -0.0020 (5) | 0.0093 (4)  | 0.0001 (4)   |
| O4  | 0.0415 (7)  | 0.0885 (9)  | 0.0347 (6)  | 0.0068 (5)  | 0.0001 (5)  | -0.0039 (5)  |
|     |             |             |             |             |             |              |

# Geometric parameters (Å, °)

| C1—C2  | 1.402 (2)   | C9—C10   | 1.404 (2)   |
|--------|-------------|----------|-------------|
| C1—C6  | 1.404 (2)   | C10-C11  | 1.3678 (19) |
| C1—C7  | 1.476 (2)   | С10—Н10  | 0.9300      |
| C2—O1  | 1.357 (2)   | C11—O3   | 1.3712 (16) |
| C2—C3  | 1.391 (2)   | C11—C12  | 1.400 (2)   |
| C3—C4  | 1.375 (2)   | C12—O4   | 1.3671 (18) |
| С3—Н3  | 0.9300      | C12—C13  | 1.389 (2)   |
| C4—C5  | 1.378 (3)   | C13—C14  | 1.387 (2)   |
| C4—H4  | 0.9300      | С13—Н13  | 0.9300      |
| C5—C6  | 1.375 (2)   | C14—H14  | 0.9300      |
| С5—Н5  | 0.9300      | C21—O4   | 1.409 (2)   |
| С6—Н6  | 0.9300      | C21—H21A | 0.9600      |
| C7—O2  | 1.2524 (16) | C21—H21B | 0.9600      |
| C7—N1  | 1.337 (2)   | C21—H21C | 0.9600      |
| C8—N2  | 1.275 (2)   | N1—N2    | 1.3840 (17) |
| C8—C9  | 1.457 (2)   | N1—H1    | 0.8600      |
| С8—Н8  | 0.9300      | O1—H2    | 1.00 (2)    |
| C9—C14 | 1.386 (2)   | O3—H11   | 0.8200      |

| C2—C1—C6       | 117.74 (14)  | C11—C10—H10       | 119.7        |
|----------------|--------------|-------------------|--------------|
| C2—C1—C7       | 119.30 (14)  | С9—С10—Н10        | 119.7        |
| C6—C1—C7       | 122.95 (14)  | C10—C11—O3        | 118.55 (12)  |
| O1—C2—C3       | 118.17 (15)  | C10-C11-C12       | 120.27 (13)  |
| O1—C2—C1       | 121.90 (14)  | O3—C11—C12        | 121.17 (13)  |
| C3—C2—C1       | 119.93 (15)  | O4—C12—C13        | 125.99 (14)  |
| C4—C3—C2       | 120.29 (16)  | O4—C12—C11        | 114.52 (13)  |
| С4—С3—Н3       | 119.9        | C13—C12—C11       | 119.49 (14)  |
| С2—С3—Н3       | 119.9        | C14—C13—C12       | 119.95 (15)  |
| C3—C4—C5       | 121.15 (16)  | С14—С13—Н13       | 120.0        |
| C3—C4—H4       | 119.4        | С12—С13—Н13       | 120.0        |
| C5—C4—H4       | 119.4        | C9—C14—C13        | 120.79 (14)  |
| C6—C5—C4       | 118.73 (15)  | C9—C14—H14        | 119.6        |
| С6—С5—Н5       | 120.6        | C13—C14—H14       | 119.6        |
| C4—C5—H5       | 120.6        | O4—C21—H21A       | 109.5        |
| C5—C6—C1       | 122.15 (15)  | O4—C21—H21B       | 109.5        |
| С5—С6—Н6       | 118.9        | H21A—C21—H21B     | 109.5        |
| C1—C6—H6       | 118.9        | 04—C21—H21C       | 109.5        |
| 02-C7-N1       | 120.78 (13)  | H21A - C21 - H21C | 109.5        |
| 02—C7—C1       | 120.90 (14)  | H21B—C21—H21C     | 109.5        |
| N1—C7—C1       | 118.29 (13)  | C7—N1—N2          | 118.93 (12)  |
| N2—C8—C9       | 120.12 (13)  | C7—N1—H1          | 120.5        |
| N2—C8—H8       | 119.9        | N2—N1—H1          | 120.5        |
| С9—С8—Н8       | 119.9        | C8—N2—N1          | 116.24 (13)  |
| C14—C9—C10     | 118.82 (14)  | С2—О1—Н2          | 105.6 (12)   |
| C14—C9—C8      | 120.88 (14)  | C11—O3—H11        | 109.5        |
| C10—C9—C8      | 120.30 (14)  | C12—O4—C21        | 117.93 (14)  |
| С11—С10—С9     | 120.68 (14)  |                   |              |
| C6—C1—C2—O1    | 179.36 (13)  | C8—C9—C10—C11     | -179.14 (13) |
| C7—C1—C2—O1    | 0.7 (2)      | C9—C10—C11—O3     | 178.47 (11)  |
| C6—C1—C2—C3    | -0.1 (2)     | C9—C10—C11—C12    | -0.4 (2)     |
| C7—C1—C2—C3    | -178.83 (13) | C10-C11-C12-O4    | 179.66 (12)  |
| O1—C2—C3—C4    | -179.71 (15) | O3—C11—C12—O4     | 0.8 (2)      |
| C1—C2—C3—C4    | -0.2 (2)     | C10-C11-C12-C13   | 0.0 (2)      |
| C2—C3—C4—C5    | 0.3 (3)      | O3—C11—C12—C13    | -178.86 (13) |
| C3—C4—C5—C6    | -0.1 (2)     | O4—C12—C13—C14    | -179.32 (14) |
| C4—C5—C6—C1    | -0.2 (2)     | C11—C12—C13—C14   | 0.3 (2)      |
| C2—C1—C6—C5    | 0.4 (2)      | C10-C9-C14-C13    | -0.2 (2)     |
| C7—C1—C6—C5    | 179.01 (13)  | C8—C9—C14—C13     | 179.45 (13)  |
| C2—C1—C7—O2    | 7.4 (2)      | C12—C13—C14—C9    | -0.2 (2)     |
| C6—C1—C7—O2    | -171.25 (13) | O2—C7—N1—N2       | -1.6 (2)     |
| C2—C1—C7—N1    | -174.64 (12) | C1—C7—N1—N2       | -179.59 (11) |
| C6—C1—C7—N1    | 6.7 (2)      | C9—C8—N2—N1       | 178.54 (12)  |
| N2-C8-C9-C14   | 178.18 (13)  | C7—N1—N2—C8       | 172.94 (13)  |
| N2-C8-C9-C10   | -2.2 (2)     | C13—C12—O4—C21    | -6.4 (2)     |
| C14—C9—C10—C11 | 0.5 (2)      | C11—C12—O4—C21    | 173.87 (14)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                        | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |  |
|----------------------------------------------------------------|-------------|--------------|--------------|------------|--|
| N1—H1···O3 <sup>i</sup>                                        | 0.86        | 2.26         | 2.9616 (16)  | 138        |  |
| O1—H2···O2                                                     | 1.00 (2)    | 1.65 (2)     | 2.5424 (19)  | 146.3 (19) |  |
| O3—H11…O2 <sup>ii</sup>                                        | 0.82        | 2.17         | 2.8451 (16)  | 140        |  |
| O3—H11…O4                                                      | 0.82        | 2.23         | 2.6781 (17)  | 115        |  |
| Symmetry codes: (i) $x, -y+1/2, z+1/2$ ; (ii) $-x+2, -y, -z$ . |             |              |              |            |  |



Fig. 1

